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Abstract: We study top quark pair production in association with a Z boson at the

Large Hadron Collider (LHC) and investigate the prospects of measuring the couplings of

top quarks to the Z boson. To date these couplings have not been constrained in direct

measurements. Such a determination will be possible for the first time at the LHC. Our

calculation improves previous coupling studies through the inclusion of next-to-leading

order (NLO) QCD corrections in production and decays of all unstable particles. We treat

top quarks in the narrow-width approximation and retain all NLO spin correlations. To

determine the sensitivity of a coupling measurement we perform a binned log-likelihood

ratio test based on normalization and shape information of the angle between the leptons

from the Z boson decay. The obtained limits account for statistical uncertainties as well

as leading theoretical systematics from residual scale dependence and parton distribution

functions. We use current CMS data to place the first direct constraints on the tt̄Z coupling.

We also consider the upcoming high-energy LHC run and find that with 300 fb−1 of data

at an energy of 13 TeV the vector and axial tt̄Z-coupling can be constrained at the 95%

confidence level to CV = 0.24+0.39
−0.85 and CA = −0.60+0.14

−0.18, where the central values are

the Standard Model predictions. This is a reduction of uncertainties by 25% and 42%,

respectively, compared to an analysis based on leading-order predictions. We also translate

these results into limits on dimension-six operators contributing to the tt̄Z interactions

beyond the Standard Model.
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1. Introduction

After run I of the Large Hadron Collider (LHC) at
√
s = 7 and 8 TeV, we look back

on a highly successful research program. Already this first phase of exploring a new en-

ergy regime has provided many exciting results: the Higgs boson was discovered [1, 2], its

quantum numbers and couplings are highly constrained, and many Standard Model (SM)

measurements are competitive with previous ones, if not exceeding them. Furthermore, a

plethora of searches for signals of new physics have been undertaken, reaching out into the

multi-TeV region as well as exploring small deviations of SM parameters. The absence of

any spectacular signal of new physics highly constrains many minimal extensions of the

SM and, at the same time, opens up new avenues for experimental searches and theoretical

model building. These developments represent a remarkably fast progress and demonstrate

the potential of the LHC in the years to come.

One particularly promising class of SM processes is top quark pair production in as-

sociation with gauge bosons or a Higgs boson. Due to their relatively high production

threshold these processes were not accessible at the Tevatron. In contrast, the high energy

and large luminosity of the upcoming LHC runs will produce sufficiently many events to

allow detailed studies of these processes. Progress in this direction has already been made

with cross section measurements of tt̄+ γ production by ATLAS at 7 TeV [3] and CMS at

8 TeV [4]. First events for the processes tt̄ + Z/W have also been reported in Refs. [5, 6].

It is exciting to envision future studies of these processes with direct measurements of the

couplings and new sensitivity to physics beyond the Standard Model.
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In this paper we focus on the determination of the top quark to Z boson couplings

through tt̄Z production at the LHC. This process is a direct probe of the tt̄Z interactions,

which distinguishes it from other indirect probes such as the LEP measurements of the

ρ-parameter [7] and the Z → bb̄ branching ratio [8]. The SM unambiguously predicts the

strength of these couplings, and higher order electroweak corrections modify the leading

order values only minimally [9]. On the other hand, extensions of the SM which address,

e.g. dynamic electroweak symmetry-breaking, typically induce larger deviations. Popular

examples are certain variants of Supersymmetry [10, 11] or Little Higgs Models [12, 13].

More generally, any new fermion which mixes with the third generation quarks might

induce deviations to the tt̄Z SM couplings. Hence also 4th generation quarks [14,15], top-

color models [16] and extra-dimensional extensions of space-time [17] have to be considered.

It is therefore important to know to what extent LHC experiments are sensitive to physics

beyond the SM in tt̄Z production. Clearly, this is not only a question of experimental

sensitivity but also depends crucially on our theoretical understanding of the production

and decay dynamics of the pp→ tt̄Z process.

The ability of LHC experiments to constrain the tt̄Z couplings was first considered in a

series of studies by Baur, Juste, Orr and Rainwater [18,19]. The authors identified suitable

observables which are sensitive to vector and axial couplings as well as to the weak electric

and magnetic dipole moments. The tri-lepton signature with semi-hadronically decaying

top quarks and a leptonically decaying Z boson turns out to provide a good compromise

between clean signature and large enough cross section. But even decay modes with a

Z boson decaying into neutrinos yield additional sensitivity [19]. These analyses show that

sensitivity to the form factor of the vector current is relatively weak and limits can only be

placed within a factor of three with respect to the SM value. In contrast, the form factor

of the axial current can be pinned down to about 20% accuracy. The authors of Ref. [20]

perform a similar analysis using the more modern language of effective operators. This

allows them to relate tb̄W and tt̄Z couplings in a combined study of single top and tt̄Z

production.

In the context of this work it is important to emphasize that all previous coupling

studies were performed at leading-order, and the large residual scale uncertainty was iden-

tified [18] as the main obstacle to stronger constraints on the tt̄Z couplings. It is the aim

of this paper to reduce these uncertainties through a NLO QCD calculation for tt̄Z pro-

duction and decay into a realistic final state with leptons, jets and missing energy. The

hadronic production of tt̄Z, with stable top quarks and a stable Z boson, was previously

calculated at NLO QCD accuracy by Lazopoulos, McElmurry, Melnikov, and Petriello [21],

and by Kardos, Papadopoulos, and Trocsanyi [22]. The latter calculation was also inter-

faced to a parton shower [23], accounting for the decays of the top quarks and Z boson

through the spin uncorrelated parton shower approximation. Further hadronization effects

were studied in Ref. [24]. Since our coupling analysis relies on studying leptonic opening

angles we believe that spin correlations are crucial for a correct interpretation of the re-

sults. We therefore account for NLO QCD spin correlations in the decay of top quarks and

hadronically decaying W bosons. This includes the full one-loop corrections as well as soft,

collinear and wide angle gluon emission off the top quark decay chain. Spin correlations
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of the leptonically decaying Z boson are included as well. While including all spin correla-

tions, we approximate top quarks and the Z boson as close to on-shell in the narrow-width

approximation. This approximation is parametric in Γ/m and its wide range of validity in

tt̄ production has been studied in Refs. [25–28].

It is interesting to note that the tt̄Z couplings may also be directly probed through

single top production in association with a Z boson. Indeed, the inclusive cross section of

tZ plus its charge conjugate process t̄Z is comparable to the inclusive tt̄Z cross section [29].

It turns out that this process is also the leading background to a tt̄Z signal, while other

backgrounds such as pp → WZbb̄jj are almost negligible [18]. However, it is possible

to separate tt̄Z and tZ production by cutting on forward jets and demanding a high jet

multiplicity, including two b-tagged jets [29]. We will therefore consider only the process

pp → tt̄Z in this paper, and defer the study of the couplings using tZ (or a combination

of both processes) to a later date.

Finally, let us note that a coupling analysis is not the only scenario in which the

process pp → tt̄Z is interesting. The semi-hadronic decay mode of the top quark pairs

together with the leptonic Z boson decay is background to several tri-lepton and same-sign

lepton searches with additional jets and missing energy. Such signatures can arise from

gluino decays in Supersymmetry, in the context of Universal Extra Dimensions, as well as

in models with fermionic top quark partners. Furthermore, the invisible decay Z → νν̄

produces a top pair plus a large amount of missing transverse energy, and is therefore

an irreducible background to searches for scalar or fermionic top quark partners decaying

into top quarks plus dark matter candidates. While we do not address these topics in this

paper, it would be interesting to study the effects of NLO corrections when strong selection

cuts are applied on this background.

2. Outline of the calculation

In this section, we briefly discuss the features of our calculation. We consider the tri-lepton

signature pp→ tt̄+Z → t(→ `νb) t̄(→ jjb̄)Z(→ ``) which profits from a large cross section

due to the hadronic decay of one W boson and the lepton multiplicities from the remaining

W and Z bosons. In our results we will sum over all combination of e± and µ± in the

final state, allowing either t or t̄ to decay leptonically. Application of the narrow-width

approximation for top quarks and the Z boson allows us to separate production and decays

stage according to

dσpp→```νbb̄jj = dσpp→tt̄+Z dBt→b`ν dBt̄→b̄jj dBZ→`` + O(Γt/mt, ΓZ/MZ), (2.1)

where dσ denotes the production cross section and dBX→Y = dΓX→Y
/

Γtot
X are the partial

branching fractions. The use of the narrow width approximation neglects contributions

which are parametrically suppressed by O(Γ/m), arising from a largely off-shell top quark

or Z boson. Severe selection cuts on final state particles can violate this approximation

when distorting the Breit-Wigner line shape of the resonance. In our analysis we aim for a

large cross section and only place mild cuts required by experimental detector acceptance.
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Hence, we believe the narrow-width is an excellent approximation for our study1. We also

neglect the contribution from the decay t → Wb + Z since the available phase space for

on-shell top quarks is tiny and Bt→WbZ ≈ 3× 10−6 [30–33].

2.1 NLO QCD correction

At leading order, the production of tt̄Z occurs through the gg and qq̄ partonic channels. At

next-to-leading order QCD, these channels receive real and virtual corrections, while real

emission corrections open up the partonic channels qg and q̄g. We also include NLO QCD

corrections to the top quark decays and the hadronically decaying W boson; consequently

their total widths are included at LO and NLO as well. Eq. (2.1) expanded up to NLO

accuracy reads,

dσNLO
pp→```νbb̄jj = dσLO

pp→tt̄Z dBLO
t→b`ν dBLO

t̄→b̄jj dBZ→`` (1 + χ)

+ dσδNLO
pp→tt̄Z+X dBLO

t→b`ν dBLO
t̄→b̄jj dBZ→`` (2.2)

+ dσLO
pp→tt̄Z

(
dBδNLO

t→b`ν+X dBLO
t̄→b̄jj + dBLO

t→b`ν dBδNLO
t̄→b̄jj+X

)
dBZ→``.

The factor χ = −2Γtot,δNLO
t /Γtot,LO

t − 2Γtot,δNLO
W /Γtot,LO

W arises from the αs expansion of

the total widths in the denominator. The virtual corrections are evaluated using a numer-

ical OPP realization [34] of D-dimensional generalized unitarity [35–37] (for a review, see

Ref. [38]). We extended the framework of Ref. [39] to account for color neutral bosons,

which requires new tree level recursion relations as well as an extension of the OPP proce-

dure. Soft and collinear singularities in the real emission corrections are regularized using

the dipole subtraction scheme of Refs. [40, 41], supplemented with a cut-off parameter for

the finite dipole phase space [42–45]. The virtual and real corrections to the top quark

decay and hadronic W boson decay are implemented analytically. Soft and collinear sin-

gularities in the real emission decay phase space are regularized using subtraction dipoles

given in Ref. [46]. We also would like to point out our utilization of parallel computing

features. We implemented a version of the Vegas integration algorithm which allows paral-

lelization [47] via the Message-Passing-Interface (MPI) [48]. The observed speed-up in run

time scales almost linearly with the number of CPU cores used. This allows us to obtain

a full NLO QCD prediction for the total cross section within a few hours on a modern

desktop computer with 8 cores.

We perform several checks to ensure the correctness of our calculation. The squared

amplitudes for tree level and real emission corrections are checked against MadGraph v.2.49

[49]. The cancellation of poles in D − 4 of dimensional regularization between the virtual

corrections and integrated dipoles has been verified for several phase space points. We also

checked the finite part of the virtual amplitudes against the automated program GoSam [50]

for a few phase space points and find very good agreement. Our framework also allows

us to turn the Z boson into an on-shell photon which we used to cross check against the

1If necessary we can improve our results by allowing off-shell top quarks, Z boson and photons at LO.

Non-factorizable corrections at NLO QCD which are suppressed by αs Γ/m have to be neglected in our

framework.
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Figure 1: Shape comparison between our results (RS) and those of Ref. [24] (GKPT) for stable

top quarks and Z boson. Shown is the normalized transverse momentum spectrum of the top quark

at NLO QCD for the process pp→ tt̄Z at 7 TeV.

amplitudes of Ref. [46]. At the level of the integrated cross section, we vary the cut-off

parameter for the finite dipole phase space by at least one order of magnitude and verify

independence from this parameter for the total cross section and kinematic distributions.

The interface of production and decay amplitudes is checked by integrating over the full

phase space and verifying the factorization into the inclusive cross section for stable top

quarks and Z boson times their branching ratios, at NLO QCD. Finally, we compare our

full hadronic results with a previous calculation [24] in the literature for stable top quarks

and Z boson. For the purposes of this comparison, we take masses of the top quark,

W boson and Z to be mt = 173.5 GeV, MW = 80.39 GeV, and MZ = 91.187 GeV. The

electroweak coupling is defined through the Fermi constant GF = 1.16639 × 10−5 GeV−2

and the weak mixing angle sin2 θw = 1 −M2
W /M

2
Z . CTEQ6L1 [51] and CTEQ6.6M [52]

parton distribution functions (pdfs) are used at LO and NLO respectively, corresponding

to a strong coupling of αLO
s (MZ) = 0.130 and αNLO

s (MZ) = 0.118. At the central fac-

torization and renormalization scale of µ0 = mt + mZ/2, we find a leading order cross

section of 103.5(1) fb and a next-to-leading order QCD cross section of 137.0(3) fb. This

is to be compared with the results of Ref. [24] of 103.5(1) fb and 136.9(1) fb, at leading

and next-to-leading order QCD. The cross sections are in excellent agreement within the

integration errors. Figure 1 also demonstrates good agreement in shape for the top quark

pT distribution between our results and Fig. 1a in Ref. [24].

2.2 tt̄Z couplings

The tt̄Z interaction Lagrangian in the SM can be written as

LSM
tt̄Z = ie ū(pt)

[
γµ
(
CSM

V + γ5C
SM
A

)]
v(pt̄)Zµ, (2.3)
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with the electromagnetic coupling constant e. The vector and axial couplings are

CSM
V =

T 3
t − 2Qt sin2 θw
2 sin θw cos θw

,

CSM
A =

−T 3
t

2 sin θw cos θw
, (2.4)

where Qt = 2/3 is the top quark electric charge, T 3
t = 1/2, and θw is the weak mixing

angle. The numerical values for the SM couplings are CSM
V ' 0.244 and CSM

A ' −0.601.

New physics contributions to the tt̄Z couplings are most conveniently introduced by higher

dimensional operators in the language of effective field theory. A minimal set of dimension-

six operators for top quark production and decay have been categorized in Refs. [53–55]. In

total there are 91 different operators which can be summarized into 20 different anomalous

couplings, if on-shellness and gauge invariance is enforced [54]. For interactions of a Z boson

with top quarks only four anomalous couplings, C1/2,V/A, remain and Eq. (2.3) becomes

Ltt̄Z = ieū(pt)

[
γµ
(
C1,V + γ5C1,A

)
+

iσµνqν
MZ

(
C2,V + iγ5C2,A

)]
v(pt̄)Zµ, (2.5)

with σµν = i
2 [γµ, γν ] and qν = (pt−pt̄)ν . In this work we will confine ourselves to the study

of the above vector and axial couplings C1,V/A, and neglect the C2,V/A terms corresponding

to the weak magnetic and electric dipole moments of the top quark. Their tree level

values vanish in the SM, and C2,V receives one-loop corrections of O(10−4) [56], while

C2,A receives finite contributions only beyond two-loops [57]. On the more technical side,

the tensor structure that multiplies the C2,V/A couplings introduces the complication of

non-renormalizable amplitudes at NLO QCD. While it is straightforward to handle such

contributions, our current implementation of the OPP integrand reduction method does

not allow tensor ranks larger than N for N -point loop integrals. Such an extension of

the OPP reduction algorithm has been outlined in Appendix B of Ref. [58]. We intend to

come back to this issue in a separate publication in order to study the phenomenological

implication of electroweak dipole moments in tt̄Z production.

The couplings C1,V/A can be written in terms of the SM contribution plus deviations

due to higher dimensional operators

C1,V = CSM
1,V +

(
v2

Λ2

)
Re
[
C

(3,33)
φq − C(1,33)

φq − C33
φu

]
, (2.6)

C1,A = CSM
1,A +

(
v2

Λ2

)
Re
[
C

(3,33)
φq − C(1,33)

φq + C33
φu

]
,

where

C
(3,33)
φq = i (φ†τaDµφ) (t̄Lγ

µτatL),

C
(1,33)
φq = i (φ†Dµφ) (t̄Lγ

µtL), (2.7)

C33
φu = i (φ†Dµφ) (t̄Rγ

µtR).

In the above, tR,L are the top quark spinors and φ is the SM Higgs doublet. For further

definitions, we refer the reader to Ref. [54].
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We now would like to comment on existing constraints on the tt̄Z couplings. Clearly,

these constraints are not obtained directly through on-shell production of a Z boson in

association with top quark pairs. Instead, they arise from potential deviations which the

higher dimensional operators in Eq. (2.6) introduce to the ρ parameter and the Zbb̄ vertex

in the SM. Those parameters are highly constrained through the experimental fits [59] of

the ε parameters [60–62],

εexp
1 = (5.6± 1.0)× 10−3, εexp

b = (−5.8± 1.3)× 10−3. (2.8)

The SM predicts their values as εSM
1 = (5.21 ± 0.08) × 10−3 and εSM

b = −(6.94 ± 0.15) ×
10−3 [59]. The new physics contributions in Eq. (2.6) introduce the corrections [63]

δε1 =
3m2

tGF

2
√

2π2
Re

[
C

(3,33)
φq − C(1,33)

φq + C33
φu +O

(
v2

Λ2

)](
v2

Λ2

)
log

(
Λ2

m2
t

)
, (2.9)

δεb = −m
2
tGF

2
√

2π2
Re

[
C

(3,33)
φq − C(1,33)

φq +
1

4
C33
φu

](
v2

Λ2

)
log

(
Λ2

m2
t

)
. (2.10)

The experimentally measured values in Eq. (2.8) can now be used to constrain the operators

C
(3,33)
φq , C

(1,33)
φq and C33

φu. We will present the numerical results later in Sect. 3.4 together

with our results from tt̄Z production. A further experimental constraint arises from the

measurements of the ZbLb̄L couplings from Rb and AbFB at LEP, which are in per-mille

level agreement with the SM predictions [8]. This experimental fact together with the

SU(2)L symmetry of the SM can be used to relate C
(3,33)
φq ≈ −C(1,33)

φq . Hence, one of the

two operators can be eliminated from Eq. (2.6).

3. Results

3.1 NLO QCD Results

In this section we describe the details of our numerical analysis and the results. We consider

the process pp → tt̄ + Z → t(→ `νb) t̄(→ jjb̄)Z(→ ``) and sum over all combinations of

leptons e±, µ±. We choose the following fixed input parameters

mt = 173 GeV, mb = 0 GeV,

MZ = 91.1876 GeV, MW = 80.385 GeV,

GF = 1.166379× 10−5 GeV−2, ΓZ = 2.4952 GeV. (3.1)

Unless otherwise stated, we use MSTW2008 parton distribution functions [64] with αs(MZ) =

0.13939 and αs(MZ) = 0.12018 at LO and NLO, which we evolve to the renormalization

scale µren using 1-loop and 2-loop running, respectively. The LO and NLO scale depen-

dence has been studied in previous works. We do not repeat these studies here, and adopt

the central scale µ0 = mt + MZ/2 for µ = µren = µfact, as suggested in Ref. [21]. Since

we include NLO QCD corrections to the top quark decay and the hadronically decaying

W boson, we need to include their total widths up to next-to-leading order,

ΓLO
t = 1.4957 GeV, ΓNLO

t = 1.3693 GeV,

ΓLO
W = 2.0455 GeV, ΓNLO

W = 2.1145 GeV. (3.2)
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Figure 2: Transverse momentum spectrum (left) and azimuthal opening angle (right) of the two

leptons from the Z boson in the process pp→ tt̄+ Z → t(→ `νb) t̄(→ jjb̄)Z(→ ``) at the 13 TeV

LHC. The bands represent the LO (light) and NLO (dark) results for scale variation by a factor of

two around the central scale µ0. The lower panes show the differential K-factors.

We consider proton-proton collisions at the LHC with a center-of-mass energy of
√
s =

13 TeV. To account for detector acceptances and trigger we require

p`T ≥ 15 GeV, |y`| ≤ 2.5,

pjT ≥ 20 GeV, |yj | ≤ 2.5,

pmiss
T ≥ 20 GeV, R`j ≥ 0.4. (3.3)

Jet are defined by the anti-kT algorithm [65] with R = 0.4. With these input parameters

and cuts we find the LO and NLO QCD cross sections,

σLO
tt̄Z = 3.79(0)+34%

−25% fb, σNLO
tt̄Z = 5.16(1)+13%

−12% fb (3.4)

for the central scale µ0 which is varied by factors of 2 and 1/2. The value in brackets is

the integration error on the last digit. The dependence on the unphysical scale is reduced

from approximately ±30% at LO to ±13% at NLO QCD. Higher order corrections increase

the cross section by 36%, K = σNLO
tt̄Z

/
σLO
tt̄Z = 1.36. We also calculate the cross sections

without any acceptance cuts and find a significantly lower K = 1.23. This emphasizes the

importance of modeling a realistic final state with all unstable particles decayed. The ratio

of the cross sections with and without cuts defines the acceptance function A, for which

we find

ALO =
σLO

cuts

σLO
total

= 27.1%, ANLO =
σNLO

cuts

σNLO
total

= 30.0%. (3.5)

The increase of approximately 3% when going from leading to next-to-leading order seems

minor. However, the common practice of modeling acceptance effects at LO and multiply-

ing with a K-factor obtained from a NLO calculation with stable particles, underestimates

the correct NLO cross section by ∼ 1−ALO/ANLO ' 10%. To estimate uncertainties from

parton distribution functions we contrast the results in Eq. (3.4), using MSTW pdfs, with
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the differential K-factors.

a calculation that uses the pdf sets from CTEQ6L1 [51] and CT10 [66] at LO and NLO

QCD, respectively. We find

σLO
tt̄Z = 3.25(0)+34%

−23% fb, σNLO
tt̄Z = 4.80(1)+13%

−13% fb. (3.6)

These cross sections are about 14% smaller at LO and 7% smaller at NLO QCD compared

to the results obtained with MSTW parton distribution functions. At NLO, we find that

4% out of the total difference of 7% is due to the different values of αs(MZ). The resulting

scale uncertainty bands are approximately the same for CTEQ and MSTW pdfs. Hence,

the difference due to the two different parton distribution sets is well within the uncertainty

estimate from factorization and renormalization scales.

Before turning to the tt̄Z coupling analysis, let us discuss some generic kinematic

distributions. Fig. 2 (left) shows the transverse momentum of the two lepton system

reconstructing the Z boson. Similar to the total cross sections we observe a strong reduction

in unphysical scale dependence over the entire pT spectrum. Scale bands for LO and NLO

predictions are comfortably overlapping. From this plot we read off an average transverse

momentum of the Z boson of almost 100 GeV with a far-extending kinematic tail, promising

approximately 30 events with pZT ≈ 300 GeV from 300 fb−1 at the 13 TeV LHC. Fig. 2

(right) shows the azimuthal opening angle between the two leptons from the Z boson

decay. This observable has been proven to be a good analyzer of the tt̄Z couplings [18] and

we will consider it in the following analysis. Again, we observe strong reduction in scale

dependence when going from LO to NLO. The differential K-factor in the lower pane of

these plots shows shape changes in the range of 10% due to higher order corrections, which

makes the pZT spectrum harder and decreases the opening angle between the leptons.

On the left hand side of Fig. 3 we compare the transverse momentum spectra (at NLO

QCD) of the leptons arising from either the top quark decay or the Z boson. The leptons

arising from the Z boson are significantly harder than those arising from the top decay. In
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fit described in Eq. (3.8).

Fig. 3 (right) we study the dependence of our predictions on different parton distribution

sets. The results for the ∆φ`+z `−z distribution show that the two NLO predictions obtained

with MSTW [64] and CTEQ [51,66] pdfs yield consistent results over the entire spectrum.

However, as can be seen in the lower pane, the K-factors differ significantly (10% or more)

due to very different predictions with LO pdfs (cf. also Eqs. (3.4) and (3.6)).

3.2 Coupling extrapolation and statistical analysis

We will now use our calculation to investigate the constraints that can be placed on tt̄Z

couplings, using both existing and anticipated LHC data. To do so, we need to determine

how normalization and shapes of differential distributions depend on variations of the

couplings. Hence total cross sections and differential distributions need to be calculated

for a large grid of C1,V and C1,A coupling values. This is simple enough at LO, and while

it is still feasible at NLO, it does place a strain on computing resources. As a convenient

alternative, we note that tt̄Z production and decay amplitudes at LO or NLO QCD can

be written as

M =M0 + C1,VMV + C1,AMA, (3.7)

with the coefficientsMi encoding both the kinematics and all couplings other than the tt̄Z

couplings. The differential cross section is then dependent on six coupling structures, and

can be written as

dσ = s0 + s1C1,V + s2C
2
1,V + s3C1,A + s4C

2
1,A + s5C1,V C1,A. (3.8)

Evaluating the cross section for six values of (C1,V , C1,A) allows us to solve for the coeffi-

cients si. These can then be used to extrapolate results for any values of C1,V and C1,A.

Furthermore, this fitting procedure can not only be done for the total cross section but also

bin-by-bin for a given distribution, retaining the effects of spin correlations and selection

cuts. As a check of this approach, we have evaluated the cross sections and distributions

for a few points in the (C1,V , C1,A) parameter space, both by an explicit calculation and

– 10 –
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Figure 5: Normalized distributions of the azimuthal opening angle of the opposite sign leptons

from the Z boson decay at the 13 TeV LHC. In the left plot, shapes of LO and NLO QCD predictions

are compared for SM tt̄Z couplings. Shape changes due to deviations from the SM values are shown

in the right plot, for the NLO calculation.

by using the fit for the si coefficients. Excellent agreement is found in all cases. As an

example, we show one comparison in Fig. 4 for the ∆φ`+z `−z distribution, which we will later

use in the coupling analysis. As can be seen in Fig. 4, the overall normalization and the

shape are correctly reproduced by the fitting procedure. In this figure and the following,

the relative shifts in the couplings are given by

∆C1,V =
C1,V

CSM
V

− 1, ∆C1,A =
C1,A

CSM
A

− 1. (3.9)

In our analysis we focus on the tri-leptonic final state and employ the azimuthal angle

between the leptons originating from the Z boson decay to perform our analysis. This

angle has been identified as being particularly sensitive to the tt̄Z couplings in Ref. [18].

We have already discussed the strong reduction in scale uncertainty when going from LO

to NLO QCD for this observable. Here, in Fig. 5 (left), we show the effect of NLO QCD

corrections on the shape of the normalized ∆φ`` distribution. Higher order effects tend to

shift events from larger to smaller opening angles. In Fig. 5 (right) we show that similar

shape changes can arise due to variations of the vector and axial tt̄Z couplings. This

emphasizes the importance of precise predictions, since missing higher order effects might

be misinterpreted as deviations from the SM. To illustrate that the ∆φ`` shape is a useful

discriminator for our coupling analysis, we have chosen a value (∆C1,V,∆C1,A) in Fig. 5

(right) such that the total cross section approximately coincides with the SM tt̄Z cross

section. Hence, a measurement of the rate alone would not reveal the deviations from its

Standard Model value.

Let us now outline the basic features of our statistical analysis. We are interested in

answering the question: what are the bounds that can be placed on deviations of the tt̄Z

couplings, assuming that the SM is true? Obviously, the answer will depend on the assumed

integrated luminosity of the data sample as well as on theoretical and experimental uncer-

tainties. We assume the SM prediction as our null hypothesisHSM (∆C1,V,∆C1,A) = (0, 0),

against which we test alternative hypotheses Halt with (∆C1,V,∆C1,A) 6= (0, 0). Alterna-
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tively, the null hypothesis can be replaced by observed data from LHC experiments to

determine the best fit in (∆C1,V,∆C1,A) parameter space. This also enables the exclusion

of parts of the parameter space at a given confidence level. Assuming that the data agree

with the SM, the bounds on the tt̄Z couplings obtained in this work should approximate

those obtained from real data. We construct two likelihood functions LSM and Lalt which

allow us to define a test statistic Λ = log (LSM/Lalt). We then generate two event sam-

ples for a fixed integrated luminosity assuming that either HSM or Halt is true. The test

statistic Λ can be evaluated for these two event samples, and repeating this evaluation in a

large number of pseudo experiments provides the probability distributions P (Λ|HSM) and

P (Λ|Halt). The overlap of these two probability distributions can be used to define the

type-I error for rejecting HSM in favor of Halt, even though HSM is true. This error can

finally be translated into the more familiar confidence level in terms of standard deviations.

Let us now describe the procedure outlined above more precisely and illustrate how

differential distributions at NLO QCD can be used. We closely follow typical likelihood-

based analyses as described for example in Ref. [67], based on the original procedure by

Feldman and Cousins [68]. The starting point is the binned likelihood function

L(H|~n) =

Nbins∏
i=1

Pi(ni|νHi ) (3.10)

with the Poisson distribution Pi for ni events in the i-th bin, given the expected value

νHi for hypothesis H. Consequently the two log-likelihood functions for the SM and the

alternative hypothesis read

logL(HSM|~nobs) =

Nbins∑
i=1

[
ni,obs log(νSM

i )− log(ni,obs!)− νSM
i

]
,

logL(Halt|~nobs) =

Nbins∑
i=1

[
ni,obs log(νalt

i )− log(ni,obs!)− νalt
i

]
, (3.11)

where the sum over i runs over all bins in a given histogram. Eqs. (3.11) allow us to

construct a log-likelihood ratio which serves as the test statistic

Λ(~nobs) = log

(
L(HSM|~nobs)

/
L(Halt|~nobs)

)
=

Nbins∑
i=1

[
ni,obs log

(
νSM
i

νalt
i

)
− νSM

i + νalt
i

]
. (3.12)

The log-likelihood ratio is guaranteed to be the optimal test statistic through the Neyman-

Pearson lemma [69]. It can now be evaluated with νi being the events from the ∆φll
histogram, and ~nobs being the Poisson distributed events around νi, for either the SM

or the alternative hypothesis. Repeating this procedure for a large number of pseudo-

experiments yields the two probability distributions of Λ(~nSM) and Λ(~nalt). An example

of two such probability distributions, P (Λ|HSM/alt), is shown in Fig. 6 for LO (left) and

NLO QCD (right). These two distributions can be used to define a confidence level for
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Figure 6: Probability distributions of the log-likelihood ratio Λ assuming that the observed

events follow the SM hypothesis (blue) or an alternative hypothesis (red) with (∆C1,V,∆C1,A) =

(0.8, 0.36). The solid lines include statistical and systematic uncertainties as described in the text,

whereas the dashed lines only include statistical uncertainties. The left plot shows the separating

power using LO input with ∆syst. = 30%, the right plot is obtained at NLO QCD with ∆syst. = 15%,

assuming
√
s = 13 TeV and L = 300 fb−1.

excluding the alternative hypothesis. For a given value Λ̂, the probability of accepting Halt

even though HSM is correct (type-I error) is

α =

∫ Λ̂

−∞
dΛ P (Λ|HSM). (3.13)

Similarly, the probability of accepting HSM even though Halt is correct (type-II error) is

given as

β =

∫ ∞
Λ̂

dΛ P (Λ|Halt). (3.14)

We define Λ̂ such that α = β, i.e. there is equal chance of incorrectly rejecting one hypoth-

esis in favor of the other. The value α(Λ̂) is then a measure of statistical discrimination

between the two hypotheses. It can be translated into the more familiar number of standard

deviations by

σ =
√

2 erf−1(1− α), (3.15)

where erf−1 is the inverse error function.

The above discussion made no mention of systematic uncertainties. In this work we

would like to include the leading theoretical uncertainties from unphysical scale dependence

and errors associated with parton distribution functions. For simplicity we neglect experi-

mental systematics such as efficiencies or momentum smearing effects. Note however that

we include realistic detector acceptances through the cuts in Eq. (3.3). Statistical fluctua-

tions are obviously included in our analysis through the Poisson distribution in Eq. (3.10).

Following Ref. [70], we include the theoretical uncertainties through nuisance parameters

by including multiplicative factors in the log-likelihood function. The inclusion of nuisance

parameters removes the Neyman-Pearson guarantee that the log-likelihood ratio is the op-

timal test statistic. Nevertheless, one still expects the test to be approximately optimal
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as long as the nuisance parameters are reasonably constrained. We include the theoretical

uncertainties by modifying the likelihood function in Eq. (3.10) according to

L(H|~n)→ L(H|~n) × G
(
νHi |ν̃Hi (∆theor. unc.)

)
. (3.16)

We choose G to be a constant normalized function with support ν̃Hmin/max,i = ν̃Hi (1 ±
∆theor. unc.),

G
(
νHi |ν̃Hi (∆theor. unc.)

)
=
(
θ
(
νHi − νHmin,i

)
× θ

(
νHmax,i − νHi

) )/(
νHmax,i − νHmin,i

)
, (3.17)

where θ(x) is the unit step function. The value of ν̃Hi is determined by the assumed

luminosity times the cross section in the ith bin for the central scale choice µ0. To be most

conservative, we choose the cross section within the uncertainty band for each hypothesis

such that their difference is minimized. The value in each bin is then rescaled accordingly.

This treatment results in a larger overlap between the two likelihood distributions, and

consequently a larger α value and less discriminatory power between the two hypotheses.

This feature is clearly visible in Fig. 6, when comparing the solid with the dotted curves.

Contrasting the LO results in Fig. 6 (left) with the NLO result (right) shows that the lower

uncertainty associated with the NLO prediction allows for significantly better statistical

discrimination between the hypotheses. Additionally, the increase of the NLO cross section

due to the K-factor of approximately 1.4 leads to a larger number of expected events and

therefore to smaller statistical uncertainties.

3.3 tt̄Z coupling constraints from current and future LHC data

We now apply the analysis outlined in the previous section to study coupling constraints

from current and future LHC data. Figure 7 shows the relative shift of the tt̄Z cross

section for non-SM couplings with respect to the SM cross section for a wide range of

vector and axial couplings. The grid of 3200 NLO QCD cross sections is generated with

the fit described in Eq. (3.8), at low computational cost, and accounts for selection cuts

of Eq. (3.3). We find that within the given range the cross sections vary by about ±50%

away from the SM value due to shifts of vector and axial couplings. The remaining scale

uncertainty at NLO QCD was found to be ±13%, which roughly corresponds to the area

enclosed by the dotted line in Fig. 7. Hence, for all coupling values within this band, a

rate measurement alone is not sensitive to any deviation. This is true for a large range of

couplings far off the SM value, e.g. (∆C1,V,∆C1,A) = (1.7,−0.3). We will later see that

adding shape information from kinematic distributions will improve this situation and lead

to a more powerful discrimination. It is clearly noticeable in Fig. 7 that cross sections are

symmetric around the axis ∆C1,V = −1. This feature can be easily understood from the

fact that the LO cross section is dominantly proportional to C2
1,V +C2

1,A and ∆C1,V = −1

corresponds to the point C1,V = 0. We expect to see a similar symmetry around ∆C1,A =

−1, however the sign of the axial coupling is already constrained from LEP measurements

of the ZbLb̄L interaction when SU(2)L symmetry is invoked, and consequently we do not

show the results for a negative value of C1,A here.

As a side remark we would like to briefly note that we also studied the effects of tt̄Z

coupling shifts on the top quark forward-backward asymmetry (Att̄FB) at the Tevatron.
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Figure 7: Relative deviations of the NLO QCD cross section as a function of relative shifts in

vector and axial couplings with respect to the SM. The grid of 80× 40 coupling choices is obtained

from the fit described in Eq. (3.8).

At leading order, we considered the parity-violating process qq̄ → Z/γ∗ → tt̄ with cou-

pling variations as shown in Fig. 7. We find that within this range the forward-backward

asymmetry is not significantly enhanced. Hence, any discrepancy between theory and ex-

periment for Att̄FB cannot be explained by deviations of the tt̄Z couplings as assumed in

this paper.

We now use current LHC data to obtain direct constraints on vector and axial cou-

plings. The production of tt̄Z has been observed at the
√
s = 7 TeV run at the LHC,

with CMS observing nine events [6], and ATLAS observing one event with more stringent

selection criteria [5]. This enables ATLAS to place an upper bound on the tt̄Z cross sec-

tion, while CMS is able to determine σCMS
tt̄Z = 0.28+0.14

−0.11(stat.) +0.06
−0.03(sys.) pb. Clearly, error

bars from this very first measurement are large, nevertheless it constitutes a 3.3 standard

deviation from the background-only hypothesis. The measured total cross section is also

consistent with the NLO QCD predictions of 0.137 pb±11% by Ref. [23] (CTEQ pdfs)

or with 0.148 pb±11% from our calculation (MSTW pdfs). In spite of the low number of

events and correspondingly high statistical error, it is instructive to use this measured cross

section to place bounds on the tt̄Z couplings. This constitutes the first direct constraints

on these couplings. We perform a log-likelihood ratio analysis, as described in Section 3.2.

Our null hypothesis is derived from the experimental cross section σCMS
tt̄Z = 0.28 pb, from

which we predict 24 events in the tri-lepton channel from 5 fb−1 of data if no acceptance

cuts are applied. We are adopting this number as our reference point against which we

compare the alternative hypothesis, which is a given point in (C1,V, C1,A) parameter space,

and for which we calculate a predicted number of events in a 5 fb−1 dataset. To account for

uncertainties in the theoretical prediction we include a uniform distribution spanned by the

theoretical error band, for which we choose ∆theor. unc. = 40% at LO and ∆theor.unc. = 15%

at NLO QCD. For experimental systematics we need to introduce a Gaussian distributed
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Figure 8: Significance as a function of relative deviations for vector and axial couplings with

respect to the SM value. The limits are obtained from the first measurement of the tt̄Z cross

section by CMS [6]. The left (right) plot shows the limits obtained from LO (NLO QCD) input.

probability. Hence, the function G(..|..) in Eq. (3.16) has to be modified and becomes

G (ν|ν̃, σ̃) =
1√

2πσ̃2
e−(ν−ν̃)2/(2σ̃2), (3.18)

where ν̃ is the mean value of the experimental measurement and σ̃ = σexp. syst. is the

systematic experimental uncertainty. In this way the mean value ν in the likelihood func-

tion is normal distributed during the generation of pseudo experiments with a standard

deviation σexp. syst.. We adopt the experimental systematic error of σexp. syst. = ±20%

quoted in Ref. [6]. Again, we use Eq. (3.8) to generate a large grid corresponding to

C1,V ∈ [−3.42 : 3.42] and C1,A ∈ [−3.61 : 3.61]. Recall from Section 2.2 that the SM

couplings are CSM
V ' 0.244 and CSM

A ' −0.601.

The results of the log-likelihood ratio test are shown in Figure 8, for our LO (left) and

NLO (right) calculations. The color code shows the significance with which an alternative

coupling hypothesis can be excluded with respect to to the experimental data. In the plane

of relative deviations of vector and axial couplings, the point (∆C1,V,∆C1,A) = (0.0, 0.0)

corresponds to the SM value. Clearly, this point is fully consistent with the experimental

measurement. By comparing left and right plots we notice the stronger constraints when

NLO input is used. The constraints from the data using a LO calculation are −11 .
∆C1,V . 10 and −4 . ∆C1,A . 2 at the 95% C.L., while they improve at NLO to

−8 . ∆C1,V . 7 and −3 . ∆C1,A . 1. Of course, these limits are extremely loose, and

furthermore should be interpreted with care since very few events have been observed by

the experiments so far. Only a larger data set and detailed analysis of backgrounds and

detector effects will provide more reliable constraints on the tt̄Z couplings. We nevertheless

believe that these results are interesting to consider, especially when put into context with

limits obtained from the future high-energy LHC.

We turn now to this anticipated run of the LHC at
√
s = 13 TeV. Using the interpola-

tion of Eq. (3.8) we generate 441 distributions in ∆φ`` for a grid of 21× 21 ∆C1,V,∆C1,A

couplings choices in the range ±4 and ±0.6, respectively. In terms of absolute numbers,

this corresponds to varying C1,V ∈ [−0.732 : 1.22] and C1,A ∈ [−0.962 : −0.240]. The plots
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Figure 9: Significance of deviations from the SM vector and axial couplings ∆C1,V and ∆C1,A,

using 30, 300 and 3000 fb−1 of data at the
√
s = 13 TeV LHC. Results using the LO prediction

and uncertainty are shown on the left, the corresponding NLO QCD results are shown on the right

hand side.

in Fig. 9 show the significance with which non-SM tt̄Z couplings can be separated from

the SM hypothesis, assuming that the SM hypothesis is true. Clearly, this significance

is a function of the accumulated luminosity and the associated uncertainties at the given

order in perturbation theory. We therefore present six scenarios for luminosities of 30 fb−1,

300 fb−1, and 3000 fb−1 at the 13 TeV LHC with theory input at leading and next-to-leading

order in QCD. The LO pdf uncertainties are slightly smaller than at
√
s = 7 TeV, allow-

ing us to use an overall scale uncertainty of 30% at LO and 15% at NLO. The couplings

outside the light-blue area in Fig. 9 roughly correspond to the ones that can be excluded

at 68% confidence level (C.L.), whereas couplings outside the orange colored boundary can
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be excluded at 95% C.L. From comparing the first, second and third row of plots in Fig. 9

it is immediately apparent that increasing the luminosity drastically improves the limits.

By comparing plots in the left versus the right column we also see that the bounds at NLO

QCD are far stronger. This is a result of the reduced scale uncertainty and the larger cross

section due to a positive perturbative correction. Numerically, one finds that with 300 fb−1

and LO input, ∆C1,V is constrained between −4.0 < ∆C1,V < 2.8 and ∆C1,A is constrained

between −0.36 < ∆C1,A < 0.54, at the 95% C.L.2 The limits improve with NLO QCD pre-

dictions to −3.6 < ∆C1,V < 1.6 and −0.24 < ∆C1,A < 0.30. In terms of absolute values,

these intervals correspond to CV = 0.24+0.39
−0.85 and CA = −0.60+0.14

−0.18 at NLO QCD. This is

a reduction by 25% and 42%, respectively, compared to results obtained at leading order.

A noticeable feature in the exclusion limits at NLO, Fig. 9 (right), is the turnover from a

downwards bend shape to an upwards bend shape when going from 30 fb−1 to 3000 fb−1.

This feature is a complicated effect of our uncertainty treatment and a transition from

normalization to shape sensitivity in the exclusion. In the upper right plot the exclusion

region roughly follows the shape already observed in Fig. 7. This can be understood from

the fact that with a small event sample the exclusion limit is dominated by normalization

differences, whereas different shapes have vanishing exclusion power. Using a larger event

sample, shape sensitivity increases and allows us to exclude regions where normalization

differences are small but shapes differ significantly. This is the case in the lower right plot

of Fig. 9, where the previous downwards bend is safely excluded.

3.4 Limits on dimension-six operators

Having presented our main results in Fig. 9, we can use the obtained limits to put con-

straints on possible effects of physics beyond the SM. The relevant dimension-six operators

have been presented in Sect. 2.2. This is also where we pointed out that the excellent

agreement between experiment and prediction for the ZbLb̄L couplings can be used (to-

gether with SU(2)L symmetry of the SM) to relate C
(3,33)
φq ≈ −C(1,33)

φq . In the following

we will make use of this fact and eliminate C
(1,33)
φq from our analysis 3. Hence we are

left with only two dimension-six operators, C
(3,33)
φq and C33

φu. We begin by using the total

cross section measurement of CMS at 7 TeV (see Sect. 3.3). The limits on the total tt̄Z

cross section as a function of ∆C1,V and ∆C1,A directly translate into limits on the two

operators. Diagonalizing the dependence in Eq. (2.6), we find at next-to-leading order

−0.50 ≤ v2

Λ2 Re
[
C

(3,33)
φq

]
≤ 0.68,

−0.82 ≤ v2

Λ2 Re
[
C33
φu

]
≤ 1.59. (3.19)

This result should be considered with care given the low number of events observed in

current experiments. More reliable and stringent limits can only be obtained once more

2We checked that these LO limits roughly agree with the ones quoted in Ref. [18] for the 14 TeV LHC.
3It should be noted however that models exist which give vanishing corrections to Zbb̄ for finite C

(3,33)
φq +

C
(1,33)
φq . One example is given in Ref. [71] with vector-like quarks. In such case, our limits remain valid

upon the replacement C
(3,33)
φq → C

(3,33)
φq − C(1,33)

φq .
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Figure 10: Projected constraints on the operators C
(33,3)
φq and C33

φu obtained from the ∆φ`+z `−z
distribution in tt̄Z production at the 13 TeV LHC. The parameter space outside the blue colored

area can be excluded at the 95% C.L. The thin bands are indirect constraints from electroweak

precision data.

data is accumulated. To estimate how limits will improve in such a case, we use the results

presented in Fig. 9 for the luminosities 30, 300, and 3000 fb−1. Recall that these results are

not only based on the total cross section but also on the shapes of the ∆φ`+z `−z distribution.

We find at leading order

−0.31

−0.28

−0.26

 ≤ v2

Λ2
Re
[
C

(3,33)
φq

]
≤


0.33 with 30 fb−1

0.16 with 300 fb−1

0.09 with 3000 fb−1

,

(3.20)

−0.44

−0.36

−0.32

 ≤ v2

Λ2
Re
[
C33
φu

]
≤


0.67 with 30 fb−1

0.50 with 300 fb−1

0.38 with 3000 fb−1

.

At next-to-leading order QCD the limits improve to

−0.25

−0.22

−0.19

 ≤ v2

Λ2
Re
[
C

(3,33)
φq

]
≤


0.26 with 30 fb−1

0.10 with 300 fb−1

0.04 with 3000 fb−1

,

(3.21)

−0.27

−0.19

−0.13

 ≤ v2

Λ2
Re
[
C33
φu

]
≤


0.67 with 30 fb−1

0.47 with 300 fb−1

0.32 with 3000 fb−1

.
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Due to the weak correlation between vector and axial coupling limits observed in Fig. 9 and

because of Eq. (2.6), the limits on C
(3,33)
φq and C33

φu are strongly correlated. Hence, the results

in Eqs. (3.20)-(3.21) are very conservative. A more appropriate graphical representation of

these limits is given in Fig. 10 for our NLO results. We also include the indirect constraints

from electroweak precision observables ε1 and εb [60–62], updated to account for MH =

125.6 GeV in Ref. [59]. All effective operators outside the colored ellipse in Fig. 10 can be

excluded at the 95% confidence level. We observe that the limits from tt̄Z production at the

LHC are well-aligned with the precision limit from ε1. This can be understood from the fact

that ε1 is directly proportional to the SM ρ-parameter which receives sensitivity from the

Z boson self energy with a top quark loop insertion. The constraint from εb on the other

hand arises from the measurement of Z → bb̄ and SU(2)L symmetry of the SM. Hence

it leaves C33
φu mostly unconstrained since this operator contributes to the right handed

current only. Altogether, electroweak precision observables put very strong constraints on

the tt̄Z coupling; however, these only arise through indirect sensitivity. Only the analysis

of pp→ tt̄Z at the LHC will allow the placing of direct limits for the first time. It would be

an interesting continuation of this work to superimpose Fig. 10 with constraints obtained

from single tZ + t̄Z production at the LHC.

4. Conclusion

In this article we studied top quark pair production in association with a Z boson. Due

to its relatively high production threshold and penalties from small branching fractions,

this process was never observed at the Tevatron. Even at the 7 and 8 TeV run of the

LHC only a few candidate events were collected. As a consequence there is no direct

measurement of the top quark to Z boson couplings to this date. This situation will

change once the high energy LHC delivers its first tens fb−1 of data. We therefore study

the process pp → tt̄Z in the tri-lepton final state, which provides the best compromise

between clean signature and large enough cross section. The central question that we try

to answer is by how much limits on tt̄Z couplings improve once NLO QCD predictions are

used. A particularly sensitive observable for such a study is the opening angle between the

two leptons from the Z boson decay. We perform the analysis with a binned log-likelihood

ratio test which proves advantageous for several reasons. Firstly, the use of likelihood

functions guarantees reliable results even for low number of events when, for example, a

simple χ2 analysis would fail. Secondly, non-Gaussian systematic errors such as theoretical

scale uncertainties can be straightforwardly implemented in the likelihood ratio test. In

addition it turns out to be relatively easy to implement this procedure at NLO QCD. We

begin by performing this analysis on the inclusive cross section reported by CMS, which

allows us to place the first direct constraints on the tt̄Z couplings at the LHC. We proceed

to an analysis at the
√
s = 13 TeV LHC run. Assuming a residual theoretical uncertainty

of 15% at NLO we find that with 300 fb−1 of data the vector and axial couplings can be

constrained to CV = 0.24+0.39
−0.85 and CA = −0.60+0.14

−0.18 at the 95% C.L. This is a significant

improvement compared to an analysis at leading order. Even a first determination with

only 30 fb−1 of data might be possible if NLO input is used, yielding limits which are
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about two times weaker. We also translate our constraints on vector and axial couplings

into limits on dimension-six operators contributing to the tt̄Z couplings beyond the SM.

The viable region for these operators can be significantly reduced with measurements of

pp→ tt̄Z and O(100)fb−1 of data. This allows us to contrast high precision indirect limits

from electroweak observables with a direct determination from the LHC.

Finally, we note that effects of New Physics can modify the tt̄Z coupling beyond vector

and axial currents through q2-dependent higher dimensional operators. Those couplings

typically introduce non-renormalizable interactions and require an extension of our one-

loop integrand reduction method. This is an interesting subject for a continuation of this

work. Another interesting future topic is the study of sensitivity at a 100 TeV pp collider or

at an e+e− machine. At any rate, we look forward to the first analysis of the tt̄+Z,W, γ,H

processes and the subsequent precision studies of top quark phenomenology.
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